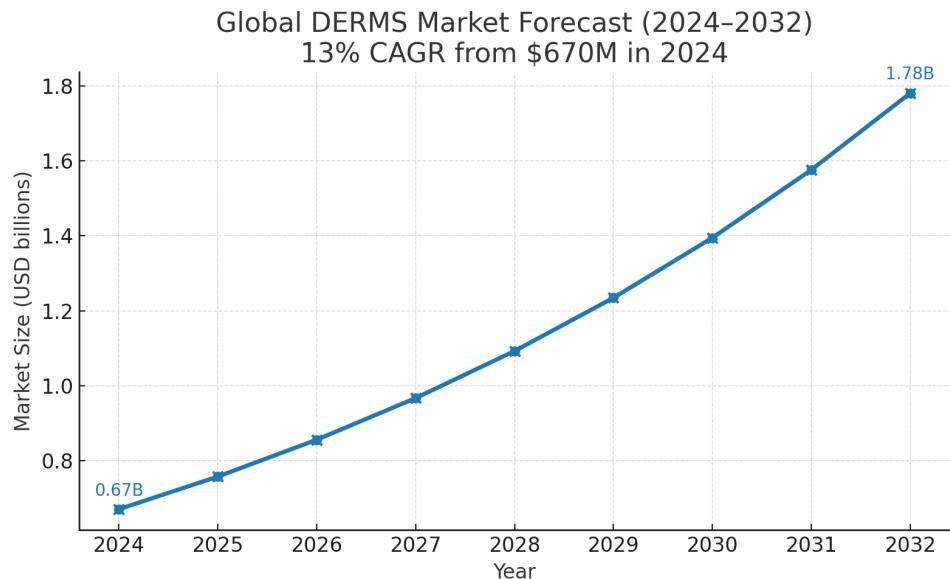


Distributed Energy Resource Management Systems (DERMS)

**Competitive Matrix, Pricing Models,
& Utility Readiness**

Executive Summary

This report provides a comprehensive analysis of the **Distributed Energy Resource Management Systems (DERMS)** market, focusing on competitive dynamics, pricing models, and the readiness of utilities to implement these solutions. DERMS are critical software platforms that allow electric utilities and energy providers to monitor, control, and optimize distributed energy resources (DERs) – such as solar panels, energy storage, electric vehicles, and demand-responsive loads – across the grid. With the rapid growth of DERs globally and the transition to cleaner energy, DERMS have emerged as a key enabler for grid flexibility and reliability.


We examine the current market landscape globally with emphasis on the United States and European Union, where policy drivers and high DER adoption are propelling DERMS deployments. The report segments the DERMS market by solution types and deployment models, highlighting trends such as the convergence of DERMS with traditional grid management systems and the rise of cloud-based “grid-edge” platforms. A competitive matrix profiles leading DERMS vendors – from established power technology firms (like Siemens, Schneider Electric, and GE Vernova) to specialized software innovators (such as AutoGrid, Opus One, Enbala, and others) – benchmarking their offerings and strategies.

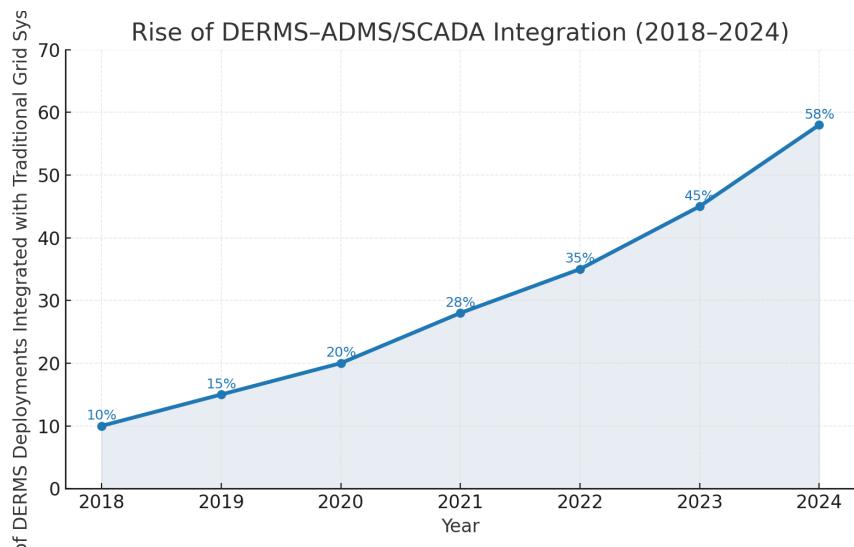
Key commercial insights are presented, including prevalent pricing models (e.g. enterprise licensing versus software-as-a-service subscriptions based on number of DERs or capacity managed) and the typical return on investment considerations. Case studies illustrate how early-adopter utilities are leveraging DERMS for various objectives, from improving grid reliability with high solar penetration to enabling virtual power plant programs that engage customers’ resources. The report also introduces maturity assessment frameworks to evaluate utility readiness, identifying common challenges and success factors in DERMS implementation. Finally, we assess overall utility preparedness and highlight adoption barriers – such as integration complexity, regulatory hurdles, and data management issues – and how the industry is addressing them.

In summary, DERMS technology is evolving from pilot projects to an integral component of modern grid operations. The market is expected to grow rapidly over the next decade, driven by the need to integrate increasing DER volumes and achieve decarbonization goals. Utilities and energy companies that develop clear DERMS strategies, choose the right vendor partnerships, and address organizational readiness will be best positioned to unlock the full value of distributed resources for their networks and customers.

1. Market Overview

The rise of distributed energy resources (DERs) – such as rooftop solar, battery energy storage, electric vehicles, and controllable loads – is transforming the electric power landscape. Unlike traditional centralized power plants, these resources are smaller and dispersed across the distribution grid on both the utility side and customer premises. Managing a high volume of DERs introduces new operational challenges for utilities, including maintaining grid stability with variable renewable generation, coordinating two-way power flows, and engaging thousands of new distributed assets as part of the energy system. **Distributed Energy Resource Management Systems (DERMS)** have emerged as the primary solution to address these challenges. A DERMS is essentially a software platform (or suite of integrated tools) that allows grid operators and other energy stakeholders to **monitor, control, and optimize DERs** in real time across the network. In effect, a DERMS serves as a “brain” that can aggregate numerous DERs into a cohesive virtual resource, orchestrate their output or consumption to support the grid, and ensure that the distribution system operates reliably and efficiently despite high DER penetration.

In recent years, the DERMS concept has evolved from early pilot projects into a growing niche within utility operational technology. Industry estimates indicate that the **global DERMS market remains in a nascent stage** – on the order of only a few hundred million dollars in annual revenue – but is expanding quickly. For example, one analysis valued the global DERMS market at around **\$670 million in 2024** and projected growth at roughly **13% CAGR** (compound annual growth rate) through 2032, reaching an estimated **\$1.8+ billion** by the early 2030s. Other market research forecasts similarly predict the market more than doubling in the latter half of the 2020s. This rapid growth outlook reflects a confluence of driving forces:

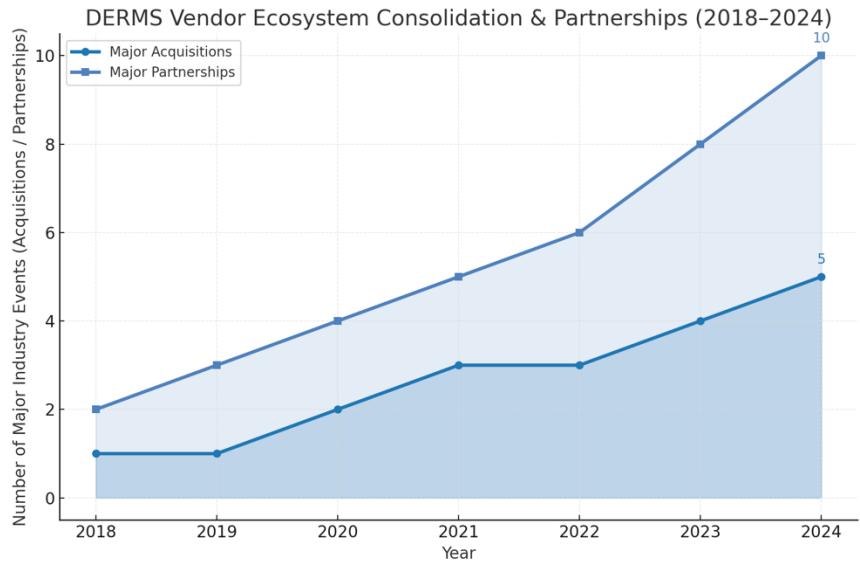

- **Surging DER Adoption:** Solar PV, battery storage, and electric vehicle deployment have accelerated worldwide, creating urgency for tools to integrate these resources. For instance, the U.S. is expected to reach nearly 400 GW of total DER capacity by 2025, up dramatically from previous years. In Europe, countries like Germany and Spain are witnessing high growth in distributed solar and storage installations as part of their clean energy targets.
- **Grid Modernization Initiatives:** Utilities are investing in smarter grid infrastructure (advanced metering, sensors, communications) and distribution automation, laying the groundwork for DERMS functionality. DERMS often feature prominently in grid modernization or “smart grid” roadmaps as a key system to enable a more flexible, resilient grid. Modern **Advanced Distribution Management Systems (ADMS)** and distributed automation schemes provide the real-time data and remote control capabilities that DERMS can leverage to manage DER impacts.
- **Policy and Regulatory Mandates:** Government decarbonization targets and regulatory changes are pushing utilities to incorporate DER. In the U.S., orders like **FERC Order 2222** require grid operators to allow aggregated DERs into wholesale markets, effectively necessitating DER coordination platforms. Similarly, in Europe, efforts under the EU Clean Energy Package encourage distribution system operators (DSOs) to actively manage and procure flexibility from DERs. These policies incentivize utilities to deploy DERMS to meet new market and reliability obligations, often with regulators explicitly supporting or funding pilot programs.
- **Operational Efficiency and Reliability Needs:** By leveraging DERs as grid assets, utilities can defer costly infrastructure upgrades (via non-wires alternatives), manage peak loads more economically, and improve power quality. DERMS provide the visibility and control needed to dispatch these distributed solutions. They also help maintain reliability in the face of DER-driven challenges like voltage fluctuations or reverse power flow. In essence, DERMS can transform the proliferation of DER from a threat to grid stability into an opportunity: the software can harness many small energy resources collectively to support the grid and provide value to both the utility and customers.

As the penetration of DER continues to increase, DERMS are expected to become a **standard component of utility operations** over the next decade, particularly in regions like North America and Europe where DER growth and supportive regulation are strongest. For many utilities, deploying a DERMS is no longer a question of *if* but *when*, as maintaining the status quo without such systems becomes untenable with rising distributed energy on the grid.

2. Key Market Trends

Several major trends are shaping the evolution of DERMS solutions and their adoption:

- **Convergence with Traditional Grid Management:** There is a clear trend toward integrating DERMS with **Advanced Distribution Management Systems (ADMS)** and other control room software. Many utilities initially approached DERMS as standalone pilot platforms, but now seek more unified systems. Leading vendors are ensuring their DERMS can plug into or extend existing SCADA, EMS, and ADMS infrastructure. This integration enables a single view of the grid that includes both traditional assets and DERs, providing complete situational awareness and coordinated control. For example, DERMS deployments are increasingly **network-model based**, meaning they use the electrical network model from the ADMS to optimally dispatch DERs based on real-time grid conditions – an approach already seen in high-DER regions like Australia and now emerging elsewhere.



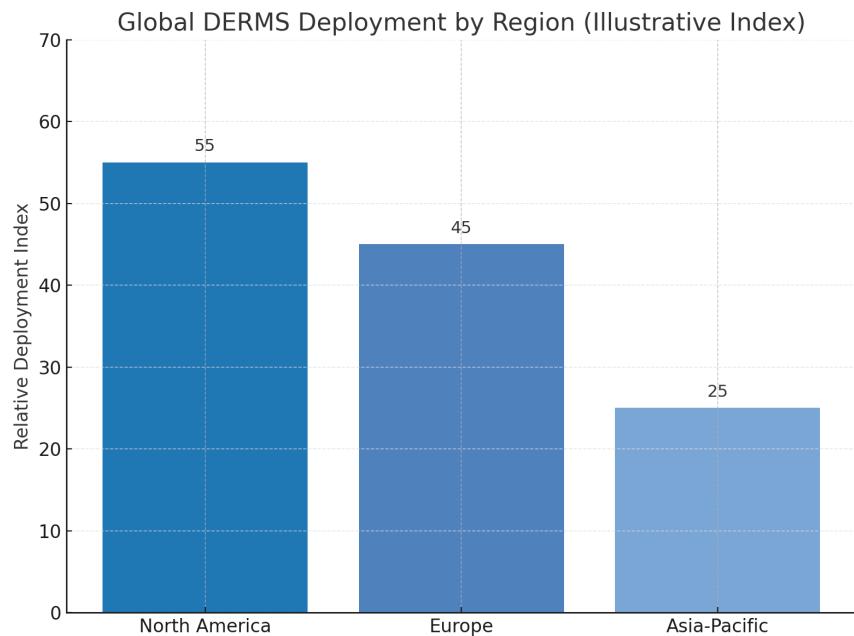
- **Shift to Cloud and Software-as-a-Service (SaaS):** Traditionally, utility operational software has been hosted on-premises for security and reliability reasons. However, with the maturation of cloud security and the need for rapid scalability, more DERMS offerings are available via cloud-based SaaS models. Cloud-based DERMS can lower upfront costs and deployment times for utilities, and allow vendors to continuously update capabilities. Particularly for “grid-edge” DERMS (focused on customer-sited DER management), a SaaS model is common, enabling faster integration of new customer devices (smart thermostats, EV chargers, home batteries, etc.). Some utilities still opt for on-premise or hybrid deployments for mission-critical grid control functions, but the overall market is moving toward flexible deployment options. For instance, some leading platforms now

support **modular cloud or on-premise** configurations to cater to each utility's IT preferences.

- **Expanding Use Cases and Functionality:** Early DERMS implementations often centered on basic demand response and solar monitoring. Now, the scope of DERMS use cases is broadening. Modern DERMS platforms handle a diverse set of objectives: **voltage regulation** (using DERs to support local voltage or VAR control), **frequency regulation and reserves** (aggregating DERs to provide ancillary services to the grid), **flexible interconnection** (managing output of DER generators to avoid distribution constraints and connect more renewables), **orchestration of EV charging** (scheduling or throttling EV charger loads to prevent local overloads), and more. This reflects an industry shift from treating DERMS as a niche system to leveraging it for comprehensive **grid optimization and market services**. Many utilities are adopting a “crawl, walk, run” approach – starting with monitoring and simple control use cases, then incrementally enabling more advanced optimization as DER penetration grows and confidence in the system increases.
- **Regulatory and Market Evolution Favoring DER Integration:** Regulatory frameworks continue to evolve in favor of DER participation, reinforcing the business case for DERMS. In the U.S., beyond FERC Order 2222, several states (e.g. California, New York, Massachusetts) have introduced performance-based incentives and grid modernization funding that support DERMS investments. In Europe, regulators are encouraging DSOs to use **flexibility markets** and local energy markets, where DERs offer services to support the grid. These policies create a trend where utilities are not only allowed but sometimes **mandated to use DERMS** to actively manage distributed resources. Additionally, wholesale market operators are updating their rules and IT systems to accommodate aggregated DERs as market players, which in turn drives utilities and aggregators to implement DERMS platforms that can handle real-time dispatch signals and settlement for DER contributions.
- **Vendor Ecosystem and Partnerships:** The competitive landscape is also influencing market trends. There has been significant **consolidation and partnership formation** in the DERMS space. Large automation and software companies have acquired specialized DERMS startups to enhance their offerings (for example, Schneider Electric acquired AutoGrid, Generac acquired Enbala, Mitsubishi Electric acquired Smarter Grid Solutions, and GE Vernova acquired Opus One Solutions). At the same time, partnerships are forming between grid-centric vendors and edge-centric vendors – for instance, a major grid software provider partnering with a DER aggregator platform to offer a combined solution. This indicates a trend toward ecosystem approaches where no single vendor does everything; instead, solutions are designed to interoperate via open standards (such as **OpenADR** or **IEEE 2030.5** for device communication). Such collaborations aim to

provide utilities with end-to-end capabilities from the distribution control center down to customer devices.

Overall, these trends underscore that DERMS technology is rapidly maturing. It is transitioning from experimental projects into a strategic, scalable toolset that aligns with broader industry movements: digitization of the grid, decentralization of energy resources, and decarbonization objectives. Utilities and energy companies are recognizing that keeping pace with these trends is essential to remain resilient and competitive in the face of the changing energy landscape.


3. Market Segmentation and DERMS Solution Types

The DERMS market can be segmented in several ways. One practical way to categorize solutions is by the **functional role and context** in which the DERMS operates:

- **Grid DERMS:** These systems are deployed by electric utilities (primarily at the distribution grid level) to **monitor and control DERs as part of grid operations**. A grid DERMS typically integrates with operational systems like the ADMS or SCADA, and it has a network-aware view of the grid. Its focus is on maintaining grid reliability and optimizing power flows in real time by dispatching DERs. For example, a grid DERMS might reduce output from rooftop solar in a specific neighborhood if voltage is too high, or call upon a fleet of batteries to discharge during a feeder overload. Grid DERMS solutions emphasize electrical power system modeling, device telemetry integration, and sometimes automated protection or safety functions. They are essentially an extension of utility control room software, tailored to handle high volumes of DER across the network.
- **Edge DERMS:** Edge DERMS (also called **customer DERMS** or **aggregator DERMS**) evolved from traditional demand response management systems. They are typically employed to manage behind-the-meter resources and customer participation in demand-side programs. An edge DERMS is often used by a utility's customer energy/DSM department or by third-party aggregators and focuses on **flexibly managing customer-sited DERs at scale**. Key functions include enrolling customers and devices, sending control signals to diverse DER equipment (like smart thermostats, EV chargers, home batteries), and aggregating these assets to deliver services such as peak load reduction, load shifting, or ancillary support. Edge DERMS platforms prioritize user-friendly interfaces for program operators, integration with customer data systems, and the ability to handle many different device types and manufacturers. In many cases, this type of DERMS essentially acts as a **virtual power plant (VPP)** platform, aggregating DERs to perform as a single resource in energy markets or utility programs.
- **Specialized DERMS:** A number of solutions target **specific use cases or niches** within the DER management domain. These can be thought of as specialized DERMS, often adopted when a very particular problem needs solving. Examples include **microgrid controllers** (which manage a local set of DERs and loads in islanded or campus microgrids), **interconnection management systems** (used by utilities to manage the output of distributed generators to avoid feeder congestion or defer upgrades – sometimes known as active network management systems), **EV charging management platforms** (focused on integrating large-scale EV adoption by scheduling charging or implementing dynamic charging rates to minimize grid impact), and **transmission-distribution coordination tools** (helping transmission operators account for aggregated

DER behavior on distribution networks). While these specialized systems may have narrower scope than a full DERMS, they address critical functions and often are components that can plug into a broader DERMS environment. As the industry matures, some of these specialized capabilities are being folded into more comprehensive DERMS offerings – for instance, leading DERMS platforms can handle both microgrid control and wide-area DER dispatch as different modules of the same system.

Another way to segment the market is by **end-user and region**. The primary customers for DERMS are electric utilities (investor-owned utilities, public power utilities, and electric cooperatives) deploying either grid or edge DERMS (or both). A secondary segment includes **energy aggregators or service providers** that use DERMS software – either procured from vendors or developed in-house – to run virtual power plant operations and offer services to utilities or grid operators. Geographically, North America and Europe account for a large share of current DERMS deployments, given high DER penetration and supportive policy environments in those regions. The United States, for example, has seen dozens of utilities initiate DERMS projects (from states like California, New York, Hawaii, Colorado, and others), while in Europe, countries such as the UK, Germany, and Italy have active DERMS or flexibility pilots underway via their distribution companies. Asia-Pacific is an emerging market for DERMS – **Australia** has been a hotbed due to its very high rooftop solar adoption, and other countries like Japan and China are beginning to explore DERMS as they invest in smart grids.

Finally, segmentation by **application or DER type** can be considered (as some early DERMS solutions were tailored to one resource, like a “solar curtailment system” or a “demand response platform”). However, the trend is toward multi-functional DERMS that can handle a broad array

of DER types under one umbrella. Vendors now design their systems to be agnostic to DER technology – whether it's solar PV, wind, battery storage, EVs, or flexible loads – making it possible for a single DERMS platform to orchestrate a holistic distributed energy portfolio.

4. DERMS Deployment Models and Implementation Approaches

Utilities and operators have taken different approaches to deploying DERMS, depending on their goals and existing infrastructure. Broadly, deployment models can vary by **hosting method**, **scope of rollout**, and **implementation approach**:

- **On-Premises vs. Cloud Deployment:** As discussed, DERMS software can be implemented on traditional on-premises servers in a utility data center or delivered as a cloud-based service. Many early DERMS pilots were on-premises, often as standalone servers interfacing with utility control systems. Today, some utilities are embracing cloud deployment for DERMS (especially for less mission-critical edge management functions) to gain quicker scalability and vendor-managed updates. In practice, a hybrid approach is common: for instance, a utility might keep core real-time grid control functions on-premises for guaranteed low latency and security, but use cloud-hosted analytics or forecasting modules of the DERMS. The choice often depends on the utility's IT policies and regulatory allowances for cloud use, and vendors have responded by offering **flexible architectures** – a DERMS may have a central control component on-premises and leverage cloud resources for heavy data processing, or be entirely cloud-based with robust cybersecurity measures.

Table: DERMS Deployment Models (4x3)

Deployment Model	Key Characteristics	Typical Utility Use Case
On-Premises	Hosted in utility data centers; highest control, lowest latency; traditional architecture	Core real-time grid control, mission-critical DER dispatch, SCADA/ADMS-linked operations
Cloud-Based SaaS	Vendor-hosted; scalable; rapid deployment; continuous updates; lower upfront cost	Grid-edge DERMS, customer-sited DER orchestration, forecasting, analytics, VPP functions
Hybrid	Mix of on-prem control + cloud analytics; flexible architecture; common modern approach	Real-time control kept local, cloud used for forecasting, optimization, DER enrollment
Considerations	Driven by IT policy, cybersecurity, regulatory approval, and latency needs	Utilities balance security, performance, cost, and modernization strategy

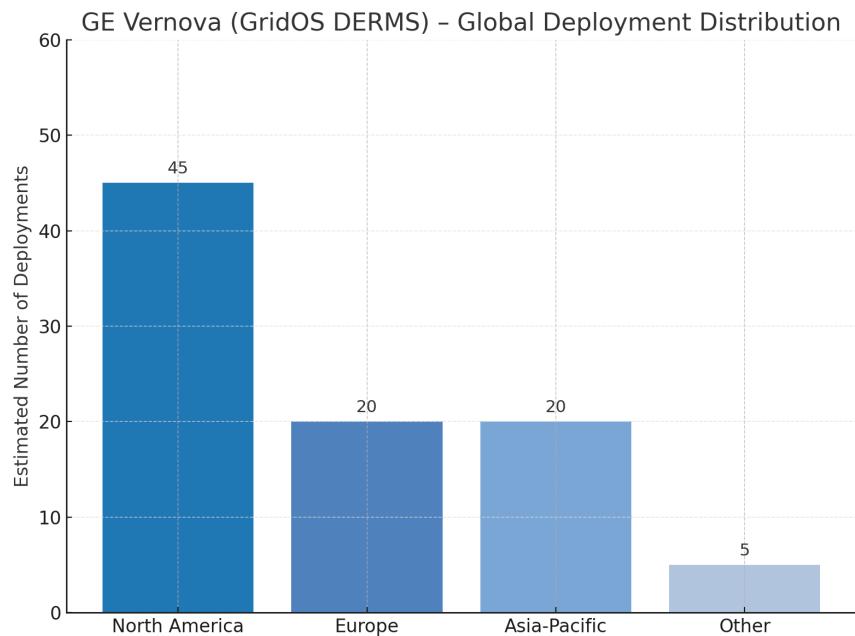
- **Phased Rollouts (“Crawl-Walk-Run”):** Given that DERMS is still an emerging capability for many utilities, deployments are frequently done in phases. A typical strategy is to start with a **pilot or limited deployment** – for example, enabling DERMS on a subset of feeders or for a specific program (like an electric vehicle charging management pilot or a virtual power plant trial in one city). In this initial “crawl” phase, the focus might be on DER monitoring and basic control under controlled conditions. As confidence and

experience grow, the utility enters the “walk” phase by expanding DERMS coverage to more grid areas and automating more functions (such as using DERMS to perform voltage support or to execute dispatch commands for peak shaving events). Finally, the “run” phase involves enterprise-wide DERMS integration where it becomes a core operational system across the entire territory with advanced optimization features fully enabled. This phased approach helps utilities manage risk, train staff gradually, and adapt business processes as DERMS capabilities ramp up.

- **Standalone vs. Integrated Implementation:** Another consideration is whether the DERMS is deployed as a **standalone overlay system** or tightly integrated with other utility systems from the start. In some cases, a DERMS is initially set up as a parallel platform that communicates with the ADMS, SCADA, and other tools via defined interfaces or an enterprise service bus. This can be a faster way to get started without disturbing legacy systems. Over time, integration often deepens – for example, the DERMS might be merged into the ADMS user interface or become a module within an ADMS suite. Some vendors offer DERMS as an add-on to their ADMS, which can simplify integration (common data models, shared user training), whereas other vendors’ DERMS might need custom integration work. Both models exist in practice: one utility might choose a best-of-breed DERMS separate from its ADMS (to leverage specialized features), while another utility might opt for the DERMS solution provided by their existing ADMS vendor for smoother compatibility. Each approach has trade-offs related to integration effort, system resilience, and vendor dependency, and utilities weigh these when planning deployments.
- **Network-Aware vs. Non-Network DERMS:** Architecturally, DERMS solutions can be distinguished by whether they explicitly utilize the electrical network model. A **network-aware DERMS** deployment integrates with the utility’s GIS and power flow model, enabling it to calculate, for instance, how a battery discharge on a particular feeder will affect voltages and loading along that feeder. This approach allows very precise, locational optimization of DER dispatch and is ideal for high-DER grids, but it requires accurate modeling data and typically the presence of an ADMS. In contrast, some early DERMS deployments are **non-network or node-based**, treating DERs more abstractly (e.g., grouping resources by region or by program without detailed circuit models). These systems optimize at the aggregate level – for example, calling 10 MW of demand response across a city without specifying which feeder gets how much relief. Non-network DERMS are simpler to implement and can still yield significant benefits (especially for bulk load reduction or market participation use cases). Over time, however, utilities tend to evolve toward network-aware DERMS as data quality improves and the need for localized control grows. We see deployment strategies where initial DERMS functions (like broad peak shaving) run without full network integration, while plans are made to link the DERMS with the distribution network model in later phases.

- **Change Management and Organization:** Successful DERMS deployment is not only a technical endeavor but also an organizational one. Utilities have found it necessary to adjust internal processes and collaborate across traditionally siloed departments (e.g., operations, planning, customer programs, and IT) when implementing DERMS. Some have created dedicated “DER integration” teams or working groups that oversee deployment across these domains. Pilot deployments often involve cross-functional participation, and scaling a DERMS may require workforce training and updates to operating procedures. Ensuring buy-in from control room operators, field engineers, and customer program managers alike is crucial, since DERMS affects all these areas. Leading utilities treat DERMS implementation as a transformation project, aligning it with broader corporate objectives like decarbonization goals and digital innovation.

Table: DERMS Change Management & Organizational Requirements (4x3)

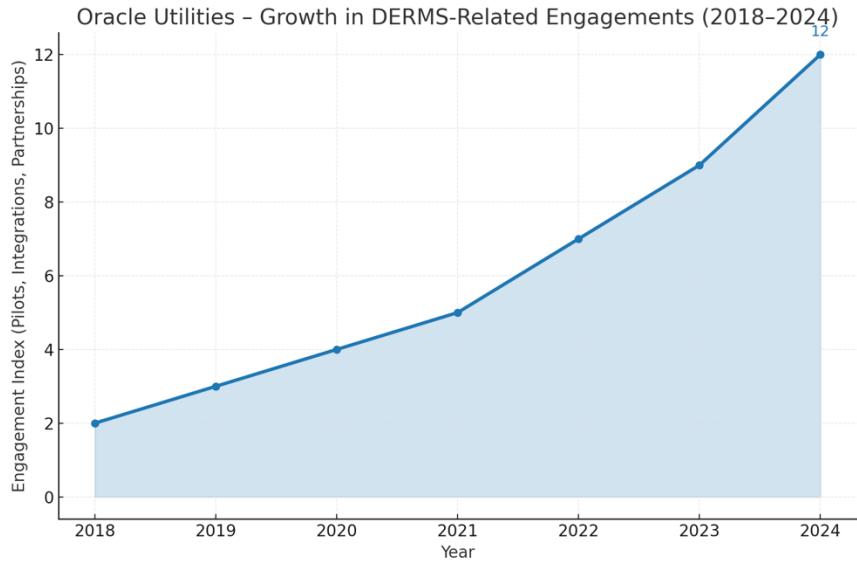

Category	Description	Examples / Implications
Cross-Functional Coordination	Collaboration across operations, planning, customer programs, and IT	Joint DER working groups, shared dashboards, unified operational procedures
Process & Workflow Updates	Existing workflows must adapt to DER visibility, dispatch, and new control logic	Revised outage procedures, DER-aware planning studies, updated escalation paths
Workforce Skills & Training	Staff must learn new tools, DER behaviors, and real-time dispatch processes	Control-room DER training, IT-operations integration training, field engineer upskilling
Organizational Alignment	DERMS positioned as a strategic transformation initiative	Tied to decarbonization, digital modernization, customer engagement, and reliability goals

In summary, there is no one-size-fits-all deployment model for DERMS. Utilities weigh factors like scope, speed, integration, and risk tolerance to formulate their implementation strategy. What is common, however, is a trend toward deeper integration and wider deployment over time – indicating that once the value of DERMS is demonstrated in limited trials, utilities tend to expand its use and incorporate it more tightly into their core operations.

5. Competitive Landscape: DERMS Vendors and Solutions

The DERMS vendor landscape features a mix of large power technology firms and smaller specialized software companies. Below is an overview of some of the leading providers and their positioning in the market:

- **GE Vernova (GE Grid Solutions):** *Overview:* GE Vernova (the energy arm of General Electric) offers a DERMS solution as part of its **GridOS** software suite. GE entered the DERMS space decisively by acquiring **Opus One Solutions** (a Canadian DERMS software startup known for advanced optimization) in 2021, integrating it into GE's grid management portfolio. *Strengths:* GE's DERMS (GridOS DERMS) is highly grid-focused, emphasizing integration with utility ADMS and real-time power flow analytics. It has been recognized as a top-tier grid-centric DERMS solution (topping at least one independent industry leaderboard in 2024). GE cites a track record of over 90 DERMS deployments worldwide, often in collaboration with utilities managing high DER penetrations. *Notable Projects:* GE's DERMS has been used in projects like Energy Queensland in Australia (to manage dynamic solar connections on the network using active DER controls) and in various North American utility pilots that required close ADMS integration and sophisticated optimization.

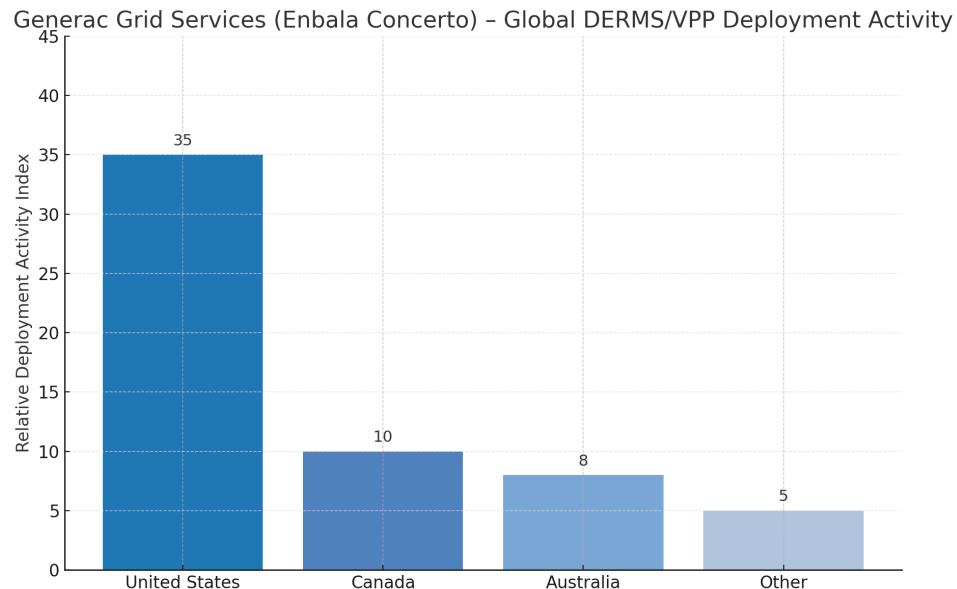


- **Schneider Electric:** *Overview:* Schneider Electric provides DERMS capabilities through its **EcoStruxure Grid** portfolio. Schneider's approach spans both grid operations and grid-edge: it offers a DERMS module integrated with its EcoStruxure ADMS for utilities, and

in 2022 it acquired **AutoGrid**, a leading DERMS/VPP platform provider, to bolster its capabilities on the edge aggregation side. *Strengths:* This combined offering allows Schneider to address DER management from “grid to prosumer.” EcoStruxure DERMS (the utility-facing solution) is a seamless extension of Schneider’s ADMS, enabling unified control center operations that include DER visibility and dispatch. Meanwhile, AutoGrid’s platform (now under Schneider) brings strong AI-driven forecasting, virtual power plant functionality, and a solid track record of large-scale demand response and DER aggregation programs. Industry analysts have ranked Schneider Electric as a leader in both grid DERMS and grid-edge DERMS categories, reflecting its comprehensive coverage. *Notable Projects:* Schneider/AutoGrid have multiple deployments worldwide – for example, AutoGrid’s software has powered virtual power plant initiatives for utilities like National Grid (in the US) and TotalEnergies (in Europe), while Schneider’s DERMS-integrated ADMS is used by utilities such as Enel in Italy as part of their grid modernization efforts.

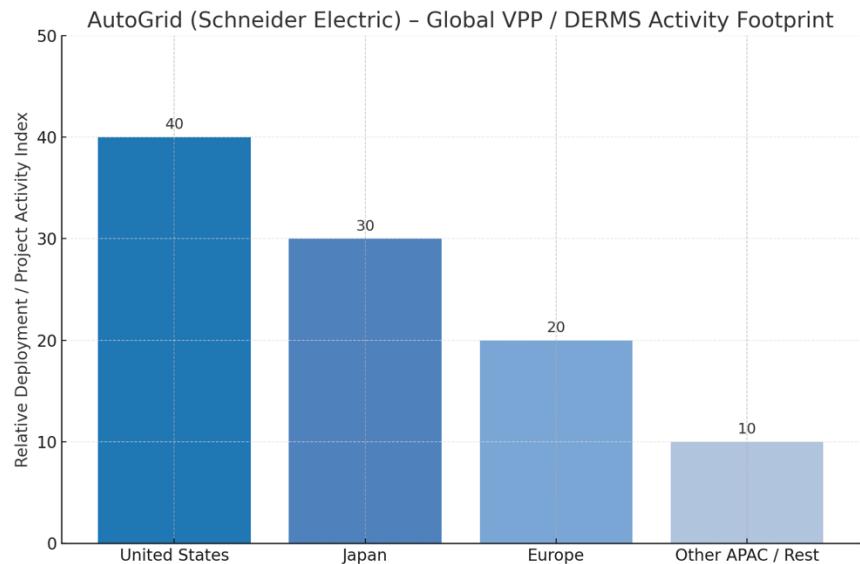
- **Siemens:** *Overview:* Siemens is a major player in utility grid software, known for its **Spectrum Power** ADMS and related control systems. Siemens has incorporated DERMS functionality into its offerings (sometimes marketed as an extension of Spectrum Power for DER orchestration). *Strengths:* Siemens leverages its deep utility domain expertise; its DERMS capabilities emphasize grid stability and reliable operations, positioning DERMS as an integrated component of distribution management. Siemens has participated in numerous research and pilot projects to advance DER integration (including contributions to standards and industry working groups). *Position:* While Siemens might not always be singled out as a standalone DERMS vendor in the way some pure-play companies are, it remains a key competitor, especially for utilities that already use Siemens’ distribution management solutions. For those clients, Siemens can deliver DERMS features that tightly mesh with existing SCADA/ADMS infrastructure. *Notable Engagements:* Siemens has worked on DERMS or DER integration projects with utilities in both Europe and North America, often highlighting how coupling ADMS and DERMS enables complete distribution grid visibility and control of DERs from the control room. It also offers complementary grid-edge control devices and IoT gateways, rounding out a holistic solution for DER integration.
- **Oracle Energy (Utilities):** *Overview:* Oracle, through its utilities division, has entered the DERMS arena by leveraging its extensive software suite for utilities (which includes customer information systems, meter data management, and a network management system from acquisitions of Alstom’s grid software business). Oracle’s approach to DERMS focuses on bridging utility operations with customer-facing DER programs. *Strengths:* Oracle brings strengths in data management, analytics, and customer engagement. Its vision of DERMS often involves using its analytics cloud to predict DER

behavior and its customer platforms (like Oracle Opower) to enroll and manage customer DER program participation. Oracle's Network Management System can incorporate DER telemetry and forecasting for operators, providing a quasi-DERMS functionality that complements its outage management and distribution control modules. *Position:* Oracle is considered a contender for utilities already invested in Oracle's ecosystem, offering an incremental path to DERMS by adding on capabilities to existing Oracle systems. While it may not have the same track record of dedicated DERMS deployments as some competitors, Oracle's large install base of utility IT systems means it can integrate DERMS functions into those environments with relative ease. *Notable Projects:* Oracle has been involved in utility pilot programs (for example, working with municipal utilities to test DER-aware distribution management) and has partnered with companies like Mitsubishi Electric in demonstration projects combining Oracle's analytics with other DER control solutions.



- **AspenTech (Emerson/OSI):** *Overview:* AspenTech, which now includes the former OSI Inc. (acquired by Emerson Electric and merged into Aspen Technology), offers DERMS capabilities as part of its grid management solutions. OSI was a well-known provider of SCADA/EMS/DMS software for utilities and had begun integrating DERMS features into its platform. *Strengths:* The OSI-derived DERMS solution benefits from a flexible and utility-friendly design, known for configurability and a user interface familiar to grid operators. It often comes embedded in the **Monarch** DMS/ADMS used by many mid-size utilities. AspenTech's focus on industrial and utility optimization software likely contributes advanced optimization tools to the DERMS product. *Position:* Now under AspenTech, this solution competes directly with other full-suite vendors (GE, Siemens, Schneider) in the grid DERMS segment. It has been ranked among leading grid DERMS providers by industry research, reflecting a solid combination of technical functionality and

market presence. *Notable:* AspenTech/OSI's DERMS has seen deployments particularly in North America, where a number of regional utilities using OSI's ADMS have extended it for DER management. For example, some cooperative utilities in the US leverage OSI's platform to monitor and control distributed generation on their rural networks.


- **Hitachi Energy:** *Overview:* Hitachi Energy (formerly Hitachi-ABB Power Grids) markets DERMS solutions building on ABB's legacy distribution automation and energy management platforms. This includes the **e-mesh** portfolio for distributed energy (which covers microgrid and battery energy storage control) and integrations with Hitachi's Lumada IoT platform. *Strengths:* Hitachi Energy's DERMS-related offerings emphasize integrating DER control with utility operations and even industrial energy management. They often highlight use cases like microgrids and utility-scale storage as part of a DERMS ecosystem, reflecting ABB's prior experience in those areas. *Position:* Hitachi Energy is a significant player particularly for utilities that use its distribution automation or those looking for combined solutions that manage DER both in grid-tied and islanded scenarios. *Notable Projects:* Examples include deployments in remote or island grids (where Hitachi's systems manage high renewables and storage to maintain stability) and collaborations with utilities in regions such as Asia and the Middle East on pilot projects for virtual power plants.
- **EnergyHub:** *Overview:* EnergyHub is a U.S.-based software company specializing in DERMS for utilities, with a focus on managing behind-the-meter resources. It is considered a leading **edge DERMS** provider. *Strengths:* EnergyHub's platform is a cloud-based service that excels at enrolling and coordinating mass-market DERs (like smart thermostats, residential batteries, EV chargers, water heaters, etc.) for utilities. It pioneered the bring-your-own-device model for demand response, enabling utilities to easily integrate customers' own smart devices into grid programs. Its strengths include a large ecosystem of device integrations, user-friendly tools for program managers, and a proven ability to deliver reliable load reductions and flexibility services when called upon. *Position:* EnergyHub is often the choice for utilities that want a turnkey demand-side DERMS solution without developing their own platform. It reports working with over 50 utilities and managing more than 1,800 MW of flexible load across its client base – which by some accounts is the largest portfolio of any DERMS provider in the U.S. *Notable Projects:* EnergyHub's clients include a range of North American utilities (investor-owned, municipal, and cooperative) running programs like thermostat-based peak shaving, EV managed charging, residential battery aggregation for grid support, and multi-DER "virtual power plant" demonstrations. For instance, EnergyHub has partnered with utilities like Exelon, National Grid, and Salt River Project on various DER programs.

- **Generac Grid Services (Enbala):** *Overview:* Generac Grid Services is the new identity of Enbala, a company acquired by generator manufacturer Generac in 2020. Enbala's platform (now called Concerto under Generac) is a high-performance DERMS/VPP software originally developed to provide fast, automated control of distributed resources. *Strengths:* The Concerto platform is known for its real-time control engine, capable of maintaining precise balance and responding to grid conditions very quickly – a legacy of Enbala's early use cases in frequency regulation and water pump load control. Under Generac, the platform has been expanded to manage not just traditional demand response assets but also to integrate with Generac's hardware products (backup generators, home solar+storage systems, etc.), aiming to create fleets of responsive home and commercial energy devices. *Position:* Generac Grid Services is a strong competitor in scenarios requiring enterprise-level DERMS deployments that span both customer-owned devices and utility operations. It was selected for a flagship deployment at Dominion Energy (described in the case studies below) as a single, comprehensive DERMS for an entire utility territory – a testament to its capabilities in both breadth (multiple DER types) and depth (integrating with utility control systems for real-time operations). *Notable Projects:* Apart from Dominion Energy in Virginia, Enbala's technology has been used in projects like operating a virtual power plant for Toronto Hydro in Canada and providing flexible load management for Portland General Electric in the U.S. Generac's involvement has further led to pilots where residential standby generators (traditionally idle until outages) are networked via DERMS to run during peak demand periods, illustrating innovative new use cases.

- **AutoGrid (Schneider Electric):** *Overview:* AutoGrid, now part of Schneider Electric, deserves separate mention due to its significant influence on the DERMS/VPP market.

Founded in Silicon Valley, AutoGrid was a pioneer in applying big data and AI techniques to energy management, offering a suite of applications under its **AutoGrid Flex** platform. *Strengths:* AutoGrid's platform is known for versatility and scale – it can handle very large numbers of endpoints and diverse DER types, providing functionalities from load forecasting and customer segmentation to automated dispatch and market bidding. It has robust capabilities for demand response program management and for orchestrating distributed assets to provide capacity and ancillary services. *Position:* Prior to acquisition, AutoGrid had an impressive global footprint (North America, Europe, and Asia-Pacific) with utility and energy provider clients. As part of Schneider, its edge-focused strengths complement Schneider's grid-focused solutions, effectively allowing Schneider to offer a full DERMS spectrum. AutoGrid's thought leadership in concepts like the “Internet of Energy” helped shape industry understanding of DERMS. *Notable Projects:* AutoGrid counts projects like a nationwide VPP in Japan (with thousands of homes and batteries coordinated for grid services), large-scale demand response networks for U.S. utilities such as Southern California Edison and Austin Energy, and partnerships in Europe for integrating renewables and DERs (for example, working with Eneco in the Netherlands on balancing wind and solar with demand flexibilities).

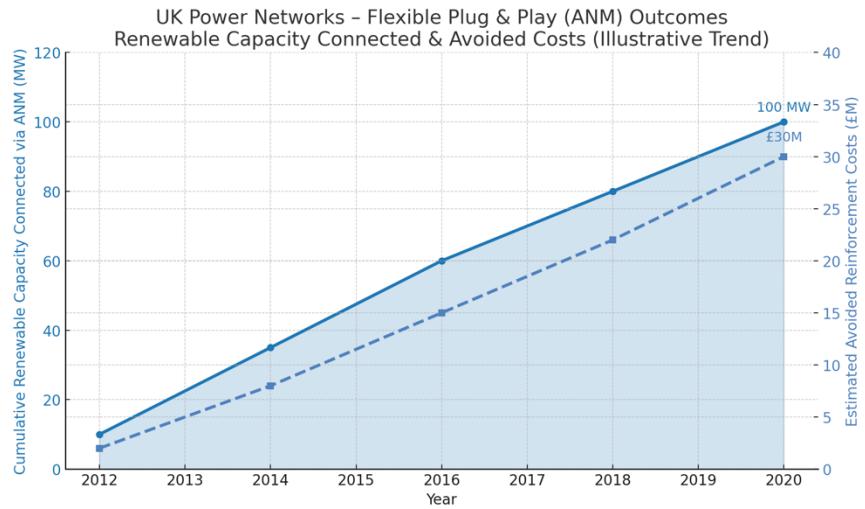
- **Smarter Grid Solutions (SGS):** *Overview:* SGS is a Scotland-origin company (now part of Mitsubishi Electric) that specializes in DERMS with an emphasis on **Active Network Management (ANM)**. Active Network Management refers to systems that manage distributed generation by dynamically adjusting their output based on real-time grid capacity. *Strengths:* SGS's flagship software (ANM Strata) is known for reliably executing fast, autonomous control actions to manage grid constraints. It has been widely used to connect more distributed generation in areas where the grid would otherwise be overloaded by adding a control layer that curtails generation only when needed. The platform is highly

interoperable, often running on industrial controllers at substations for resilience. *Position:* SGS has a strong track record in the UK and has also expanded to North America and other markets. It is considered a leader in flexible interconnection solutions – allowing utilities to offer connection agreements to DER developers that are conditional on participating in the DERMS/ANM scheme. While SGS's product historically focused on generator curtailment to manage constraints, it has evolved to also dispatch energy storage and flexible loads, making it a more full-fledged DERMS platform. *Notable Projects:* The company's technology has been deployed by UK Power Networks and Scottish Power Energy Networks, among others, connecting hundreds of megawatts of wind and solar generation through ANM. It also delivered a project in New York with Avangrid to study flexible interconnections in the state. Mitsubishi's acquisition of SGS suggests that its capabilities are being integrated into a broader suite of DSO offerings globally.

- **Other Notable Players:** Beyond the above, the DERMS market includes several other important solutions and emerging entrants:
 - *KrakenFlex (Octopus Energy):* A UK-based platform originally developed by Upside Energy (acquired by Octopus Energy), KrakenFlex is a leading-edge DERMS/VPP platform in Europe. It is used to aggregate DERs (from home batteries to EVs to industrial assets) for grid services and market participation. KrakenFlex has been employed in projects to provide flexibility to National Grid ESO and is being offered to utilities internationally by Octopus Energy Group.
 - *OATI:* Open Access Technology International, a long-time provider of energy software in North America, offers a DERMS as part of its webSmartEnergy suite. OATI's solution is used by some utilities and regional transmission organizations for demand response and distributed generation coordination, leveraging the company's experience in secure energy communications and market operations software.
 - *Virtual Peaker:* A newer U.S. startup focusing on a user-friendly, cloud-native DERMS tailored for utilities' demand response and DER programs. Virtual Peaker emphasizes quick deployment and ease of integration with IoT devices and utility back-office systems, and has gained a number of municipal and cooperative utility clients for managing residential DER programs.
 - *mPrest:* An Israeli-origin software company that adapted military-grade monitoring and control software to the energy domain. mPrest provides a DERMS that has been deployed for critical grid operations, such as by Australia's Horizon

Power for high-DER microgrid systems and by New York Power Authority in a pilot. It's known for a modular "system of systems" architecture and high reliability in fast control scenarios.

- *Blue Pillar*: A U.S. company focusing on connecting and controlling distributed assets in commercial & industrial (C&I) facilities (like backup generators, HVAC systems, and other building loads), effectively enabling those facilities to function as microgrids or demand response resources. Blue Pillar's platform can serve as a DERMS for aggregating C&I sites and has been used by some utilities to incorporate large customer-owned assets into their load management programs.
- *Regional and Specialized Vendors*: In addition, various regional players offer DERMS-related products. For example, **energy & meteo systems** in Germany provides virtual power plant software used by European aggregators to manage renewable generation and battery storage portfolios; **Voltalis** in France specializes in residential demand response (controlling electric heaters across thousands of homes to shed load at peak times); **Evergen** in Australia offers a DERMS platform optimizing solar and battery systems across homes and businesses; and large tech integrators like **Cisco**, **Microsoft**, and **Huawei** have begun to partner or develop solutions around DER orchestration as part of broader smart grid offerings.


This competitive landscape is dynamic – many vendors are iterating rapidly and new entrants continue to appear as the market grows. It's also notable that collaboration is a theme: some utilities might use multiple DERMS solutions in tandem (for instance, one for their consumer DER programs and another integrated into their grid operations). Over time, further consolidation is possible as larger firms acquire niche players to fill gaps in their portfolios. For now, utilities in the market for a DERMS have a rich selection of potential partners and often evaluate vendors based on criteria like: platform capabilities (breadth of DER types and use cases supported, real-time control versus planning features), integration ease (with existing utility systems and industry standards), scalability and performance (proven ability to handle large device counts and fast response), vendor experience and support, and overall cost of ownership.

6. Case Studies: DERMS in Action

To illustrate how DERMS are being deployed and the benefits achieved, here are a few real-world examples from different regions:

- **Dominion Energy Virginia (United States):** Dominion Energy, a large investor-owned utility in Virginia, embarked on a DERMS implementation as part of its grid modernization and transformation plan. In 2022, Dominion announced it had selected **Generac Grid Services** (formerly Enbala) to provide an enterprise DERMS solution across its distribution network. The DERMS (Generac's Concerto platform) is being used to **integrate a growing portfolio of DERs** into Dominion's operations. This includes smaller behind-the-meter resources like residential solar panels, home battery storage systems, smart thermostats, and electric vehicle chargers, as well as larger front-of-meter devices such as utility-scale solar farms and community battery installations. A key objective for Dominion was to maintain grid reliability while DER adoption accelerates; the DERMS allows grid operators to monitor DER output in real time and dispatch these resources to alleviate local constraints or stabilize the grid as needed. Moreover, Dominion's DERMS is enabling **market integration of DERs** – under new regulations (e.g. FERC Order 2222), the utility can facilitate aggregated DER participation in the PJM wholesale electricity market. The Concerto platform provides a mechanism for Dominion to send market signals or grid requests to enrolled DERs and to receive their responses, effectively allowing customers' devices to act as a virtual power plant for peak shaving or ancillary services. This case stands out due to its scale (a full-system DERMS deployment for millions of customers) and its dual aim of grid support and customer/market value creation. Dominion's experience is likely to inform other U.S. utilities on how to build the business case and technical architecture for DERMS as a foundational grid management tool.
- **UK Power Networks (United Kingdom):** In the UK, regulatory incentives have driven distribution network operators (DNOs) to actively manage DER as part of their evolution into **Distribution System Operators (DSOs)**. UK Power Networks (UKPN), which serves London and surrounding areas, implemented an **Active Network Management (ANM)** scheme – effectively a DERMS – on parts of its network to accommodate more distributed generation. One notable project, called *Flexible Plug and Play*, allowed UKPN to connect numerous wind and solar farms in Cambridgeshire by installing an ANM system that continuously monitors real-time network capacity (thermal and voltage limits) and sends curtailment signals to generators when those limits are approached. Generators agreed to be flexible (i.e. to reduce output when instructed) in exchange for quicker and cheaper grid connections. The ANM system, supplied by a DERMS vendor (Smarter Grid Solutions), proved successful: UKPN was able to connect around **100 MW** of new

renewable generation via this scheme, saving an estimated tens of millions of pounds in avoided network reinforcement costs, and cutting typical connection lead times for those projects from years to weeks. Building on such successes, all UK DNOs are now using or trialing DERMS-like solutions to manage constraints and run **flexibility services**. For example, instead of only curtailing generation, DSOs like UKPN and Western Power Distribution have developed platforms and markets where they can also call upon demand-side reductions or battery injections from DER owners when the grid needs support, compensating them for that service. The UK experience demonstrates how DERMS can be used not only to technically manage the grid but also to facilitate new commercial arrangements (flexibility contracts) between utilities and DER owners under a supportive regulatory framework.

- **Energy Queensland (Australia):** Australia has one of the highest penetrations of rooftop solar in the world, which has led to pioneering DERMS applications. **Energy Queensland**, the parent company of two major distribution utilities in Queensland, implemented a cutting-edge DERMS solution to handle the “solar soak” problem (excess midday solar production causing backflow and voltage issues on distribution feeders). Working with GE Vernova, Energy Queensland rolled out **dynamic operating envelopes (DOE)** for customers’ solar and battery systems. Through this DERMS, the utility communicates to each connected DER system a set of export limits that can vary by time of day and current grid conditions. In practical terms, on a very sunny day when a neighborhood’s solar output could overwhelm the local network, the DERMS will dynamically reduce the export limit for those solar systems (via standards-based communications like IEEE 2030.5) to a level that the grid can accommodate. When the network has more capacity (for instance, later in the day or if local demand rises), the export limits are raised so customers can maximize their generation. This flexible, granular control has allowed Energy Queensland to avoid blanket restrictions on solar connections; customers can install solar systems with the

understanding that during rare peak production moments their output might be throttled. The project required integrating the DERMS with thousands of smart inverters and the utility's network model, making it one of the most advanced DERMS deployments globally. Early results show improved network stability and high customer compliance, indicating that dynamic, two-way management of DER is feasible at scale. Other Australian states and international utilities are closely watching this approach, as it provides a template for managing high DER penetration through technical flexibility rather than blunt limits.

These case studies highlight different motivations and benefits for DERMS: enhancing reliability in a high-DER grid (Dominion), enabling greater renewable energy integration through flexible connections (UKPN), and innovating new operational paradigms for DER (Energy Queensland's dynamic envelopes). Each underscores the value of DERMS in unlocking grid flexibility and providing a bridge between distributed assets and centralized grid control.

7. Pricing Models and Commercial Strategies

DERMS vendors employ a variety of pricing models to align with utility procurement preferences and the scale of deployment. The main pricing strategies include:

- **Perpetual Licensing with Maintenance:** In this traditional model, a utility purchases a perpetual software license for the DERMS (often a large one-time capital expense) and then pays annual maintenance and support fees (typically around 15–20% of the license cost per year). This model is common for vendors who integrate DERMS into an ADMS or sell it as an enterprise software package. It allows the utility to treat the DERMS as a capital asset. However, it requires a significant upfront investment and the utility is responsible for managing software updates (with support from the vendor). Some large utilities favor this model as it can be rolled into their rate base as part of grid infrastructure upgrades.
- **Subscription (Software-as-a-Service):** Many DERMS solutions, especially those provided by newer entrants and focused on cloud delivery, are offered on a subscription basis. The utility (or aggregator) pays either a monthly or annual fee for access to the software, which might be hosted by the vendor. This **SaaS model** often scales the fee based on certain usage metrics, such as the number of DER endpoints managed, the aggregate megawatts under management, or the number of customers enrolled. For example, a contract might stipulate a base annual fee for up to 10,000 connected devices or for up to 50 MW of DER capacity, with tiered pricing if those numbers increase. The SaaS approach reduces upfront cost and shifts spending to operational expense, which can be attractive for utilities with budget constraints or those wanting to start small and grow. It also typically means the vendor handles maintenance, hosting, and regular updates, ensuring the platform stays current with minimal effort from the utility's IT team.
- **Tiered/Module-Based Pricing:** Given the modular nature of many DERMS platforms, vendors may price different functional modules separately. A utility might pay for a base DERMS platform (covering core monitoring and basic control) and then add modules such as advanced forecasting, market bidding/interaction, or volt/VAR optimization for additional fees. This allows utilities to customize what they need and pay only for the capabilities they will use. Similarly, some vendors offer **tiered service levels** – e.g., a standard tier that covers basic demand response and DER monitoring, and a premium tier that includes full optimization, AI-driven analytics, and automated dispatch. This modular pricing can be combined with either a license or subscription model, and it provides flexibility for the utility to scale up functionality as their DER programs expand.

- **Performance or Outcome-Based Models:** Although less common, there are cases where a DERMS vendor's compensation is linked to the performance or value delivered by the system. For instance, an aggregator using a third-party DERMS might have a contract where the vendor receives a small percentage of the revenues earned from demand response events or energy market participation that the platform enables. In utility deployments, some pilot contracts have included performance incentives or penalties – for example, payment bonuses for exceeding load reduction targets or clauses that tie fees to customer enrollment numbers in DER programs. While not a primary pricing model, these innovative arrangements align incentives and can help share risk, and we may see more of them as utilities seek assurances that their DERMS investments will deliver quantifiable results.

- **Enterprise Agreements and Bundling:** Large utilities that procure multiple systems from a single vendor might negotiate DERMS pricing as part of a broader enterprise deal. For example, a utility upgrading its ADMS might acquire the DERMS module from the same vendor at a discounted rate, or a utility group operating in multiple regions might sign a multi-site license. Bundling DERMS with related products (like an OMS, meter data platform, or demand response service) can also lead to overall cost savings. Vendors are often amenable to such bundling, as it increases their footprint with the client. Additionally, some vendors may offer unlimited-use or enterprise licenses for a flat annual fee, which can be cost-effective for a utility that anticipates a large scale deployment (e.g., managing hundreds of thousands of DER devices across its territory).

Regardless of the pricing structure, **cost transparency and ROI justification are key concerns** for utilities considering DERMS. Utilities typically perform a business case analysis

comparing the costs of the DERMS (including software, integration, communications, and ongoing operations) against the expected benefits. These benefits can include deferral of capital upgrades (thanks to DER support), operational savings (more efficient management of voltage or outage restoration), and new revenue streams (from market participation or incentive payments). As the DERMS market matures and competition increases, vendors have started offering more flexible pricing to reduce barriers to entry – for instance, allowing a low-cost pilot phase before committing to a full license, or scaling subscription fees with usage so that utilities pay more only as they derive more value.

From the vendor perspective, recurring revenue models like SaaS are attractive for business stability, but vendors also recognize utilities' preference in some cases for capital projects. Thus, many offer **hybrid approaches** (for example, a software license for core components and a subscription for data analytics services). In procurement, utilities often request pricing options to compare these models. The bottom line is that DERMS pricing is often tailored to each deployment's specifics, and savvy utilities negotiate terms (including support, upgrades, and possible performance guarantees) that align the investment with their strategic goals and risk tolerance.

8. Utility Readiness Evaluation

Implementing a DERMS is a multidisciplinary endeavor, and utilities vary widely in their readiness to take it on. Evaluating a utility's readiness involves looking at both technical and organizational factors. Some industry frameworks break down DERMS maturity or readiness into levels:

- **Basic** – The utility has minimal DER integration capabilities. It might be in early planning stages with respect to DERMS. Typically, at this level, the utility may have only rudimentary visibility into DERs (for example, knowing the locations of larger solar installations but lacking real-time data) and no active control over them. There may be pilot projects on the horizon, but no significant operational DERMS in place yet.
- **Developing** – The utility has started actively working on DER integration. This could include pilot programs or partial implementations of DERMS components (e.g., a system to monitor distributed solar output, or a demand response platform handling smart thermostats). At this stage, the utility may be building the business case and securing regulatory support for a full DERMS deployment. It likely has some enabling infrastructure in progress: perhaps a new ADMS being installed, a growing network of smart meters, or improved communications to field devices. The utility is learning through trials and beginning to establish internal processes for DER coordination.
- **Mature** – The utility has a DERMS in place and integrated with its core operations. In this stage, the DERMS and ADMS (and other systems like GIS and SCADA) are working in concert. The utility can monitor and control a substantial number of DERs across its network and is using the DERMS for multiple use cases (voltage management, peak load management, outage support through DER, etc.). Operating procedures have been updated to incorporate DERMS actions – for example, grid operators might routinely dispatch battery storage via the DERMS to manage peak loading, or planners might use DERMS data to inform capacity expansion decisions. The utility also typically has a solid data management foundation for DERs (up-to-date inventory, real-time telemetry for larger units, etc.). At mature utilities, DERMS is not just a pilot but part of “business as usual” in grid operations.
- **Leading** – The utility is at the forefront of DERMS utilization. It operates a fully functional, possibly multi-layered DERMS covering its entire service territory, with advanced functionalities enabled. These utilities are likely innovating new applications for DERMS, such as fully dynamic system optimization every few minutes, integration with transmission-level operations (coordinating DER with the ISO or TSO), or running local

energy markets where DERs bid to solve grid constraints. A leading utility in DERMS will have a high level of automation (the DERMS might automatically resolve many grid issues without manual intervention) and will be continually improving the system. They often share their experiences as best practices in industry forums and may help define evolving standards for DER integration. Only a few utilities globally currently fall into this category, as it requires significant experience and continuous commitment.

Leading DERMS Maturity

Category	Description	Defining Attributes
Operational Scope	DERMS deployed system-wide across entire territory	Multi-layer orchestration, full DER fleet visibility
Advanced Functions	High automation + dynamic, real-time optimization	Automated issue resolution; DERs provide grid + market services
Grid Integration	Deep integration with ADMS, EMS, SCADA, ISO/TSO	T-D coordination; predictive analytics; advanced situational awareness
Organizational Leadership	Industry-leading innovation and best-practice sharing	Continuous improvement; rare global leaders with mature DER strategy

In a 2024 benchmarking study, it was found that most utilities fall into the “Basic” or “Developing” categories at present, with only a handful considered truly “Leading” in DERMS implementation. Many utility executives perceive their organizations to be “behind” on DERMS, but in reality, since the field is so new, even those taking initial steps are often on par with peers. This underscores that industry-wide, DERMS is still an emerging capability and utilities are learning as they go.

Key Readiness Factors: To evaluate a particular utility’s readiness for DERMS, the following aspects are typically assessed:

- **Technology Infrastructure:** Does the utility have the foundational systems and equipment needed to support DERMS? Important elements include advanced metering infrastructure (for visibility into customer-sited DERs and loads), reliable communications networks down to distribution field devices (so that DER controllers, smart inverters, etc., can exchange data with the control center), and modern distribution automation (sensors and controls like voltage regulators and remote switches that a DERMS might coordinate with). Additionally, integration middleware or an enterprise service bus is a plus, to connect new DERMS software with legacy systems. A utility that has already invested in an ADMS, widespread smart meters, and upgraded telecom has a higher readiness level than one still operating predominantly analog or manually.

- **Data and Visibility:** A fundamental aspect of DERMS readiness is having a good handle on **DER data**. This means knowing where the DERs are, what their capacities are, who owns them, and ideally getting real-time or near-real-time data from them. Many utilities start by creating a comprehensive DER registry or database. Readiness improves if the utility has incorporated DERs into its GIS and network models, and if it receives telemetry from larger DER installations (like a feed from every solar farm over X MW, or aggregator portals that provide data on aggregated residential devices). Utilities also need forecasting data – for instance, solar irradiance forecasts to predict PV output, or EV adoption forecasts to anticipate charging demand. Utilities that have developed these data capabilities (or partnered with third-party providers for data) are better positioned to implement DERMS effectively.
- **Regulatory and Financial Support:** The external environment heavily influences readiness. If regulators encourage or mandate DER integration (through grid modernization proceedings, performance incentives, or specific directives like requiring a Distributed Resource Plan), then the utility is more likely to have a clear business case and approved funding for DERMS. On the other hand, if there is regulatory skepticism or if cost recovery for DERMS is uncertain, a utility might delay action. Many leading examples come from jurisdictions with progressive policies – for instance, New York’s regulators required utilities to file Distributed System Implementation Plans, which included DERMS development, or UK regulators through the RIIO framework provided funding for innovation projects like DERMS. Financially, a utility must plan for the upfront costs and ongoing expenses; having a dedicated budget and including DERMS in capital plans or rate cases is an indicator of readiness.
- **Organizational Capacity and Skills:** Implementing DERMS requires new skills and breaking down silos. A readiness assessment looks at whether the utility has a cross-functional team in place for DER integration (IT, operations, planning, customer programs all represented). It also considers training and expertise – do grid operators understand how to work with DER assets, do engineers know how to use new tools for DER forecasting, do IT staff have cybersecurity plans for a flood of IoT-like DER devices? Sometimes hiring or consulting with specialists is needed to kick-start these capabilities. A culture shift might be necessary as well: traditionally, distribution utilities haven’t controlled customer-owned assets, so operators must get comfortable with a new paradigm of sending dispatches to, say, a customer’s battery or an aggregator’s fleet of EV chargers. Utilities that have run internal workshops, training sessions, or small pilots involving their staff controlling DERs show greater readiness and smoother transitions when the DERMS goes live.
- **Strategic Roadmap and Partnerships:** A utility with a clear DERMS or DER integration roadmap is far more prepared than one without. This roadmap would outline phases (for

example, pilot in year 1, initial rollout by year 3, full integration by year 5), key milestones (like “integrate solar data into control center by X date” or “establish DER operations center”), and required investments. It might also identify preferred vendors or partners. Many utilities collaborate with consultants, national labs, or industry consortia to develop these plans – which is itself a readiness step. Additionally, partnerships can greatly enhance readiness: working with experienced DERMS vendors in a proof-of-concept, or teaming up with a demand response aggregator to jointly deliver a program, gives practical knowledge. Utilities that have engaged in such partnerships (e.g., participated in a DOE-funded demonstration project, or used a software vendor’s DERMS in a sandbox environment) tend to be more confident and clear-eyed about the challenges and requirements of full deployment.

Assessing these factors, utilities often perform self-assessments or leverage external assessments (from consulting firms or research bodies) to gauge their DERMS maturity. The outcome of a readiness evaluation is typically a gap analysis and an action plan – for instance: *“Need to upgrade field communications in rural areas to reliably reach smart inverters”* or *“Hire/train staff for DERMS operations and establish a DER dispatch desk within the control room”*. By addressing these gaps step by step, the utility increases its readiness.

One insight from early movers is the importance of treating DERMS not just as a technology project but as a transformation in grid management. That often means engaging stakeholders across the organization and even externally (regulators, customers) from the beginning. Utilities most ready to adopt DERMS are those that see it as aligned with their broader mission (like enhancing sustainability and customer service) rather than just a compliance task.

In summary, while few utilities today would claim to be fully “DERMS ready” in the sense of having everything in place, many are advancing steadily along the maturity curve. Each utility’s journey is unique, but the end goal is the same – to be able to effectively integrate and harness distributed energy resources as an integral part of operating a modern electric grid.

Conclusion

Distributed Energy Resource Management Systems are becoming a cornerstone technology for the modern electric grid. As distributed solar, storage, and flexible demand continue to surge, utilities and grid operators face a paradigm shift: instead of simply delivering power in one direction from centralized plants, they must orchestrate a two-way network with potentially millions of active endpoints. DERMS solutions provide the tools to meet this challenge by transforming diverse DER assets from passive or disruptive elements into coordinated, intelligent resources that enhance grid reliability, efficiency, and sustainability.

This report has examined the DERMS market's commercial landscape – highlighting that while the industry is still early in its growth curve, it is scaling rapidly. Leading solution providers, from industrial control giants to agile startups, are competing and collaborating to offer robust platforms that cater to both utility grid needs and edge flexibility opportunities. For utilities and energy companies, understanding the competitive matrix of vendors, their pricing models, and their track records is crucial for navigating procurement and partnership decisions.

We have also discussed how utilities can approach DERMS deployment pragmatically, through phased implementation and strategic integration, and how to gauge organizational readiness. The experiences of early adopters in the U.S., Europe, and Asia-Pacific provide valuable lessons: DERMS can unlock significant value – enabling higher renewable energy penetration, deferring infrastructure costs, engaging customers in new ways, and even opening revenue streams through market participation. At the same time, successful implementation requires careful planning, cross-functional commitment, and often a willingness to evolve traditional utility practices.

Looking ahead, the role of DERMS is set to expand. In the coming years, we can expect DERMS capabilities to become more standardized and interoperable, greater incorporation of machine learning for predictive grid management, and tighter coupling with emerging trends like **transactive energy** and local energy markets at the distribution level. Utilities that act proactively to implement DERMS will be better positioned to handle the fast-approaching future of high-DER grids and to capitalize on the flexibility and resilience that distributed resources can provide. In a very real sense, DERMS technology is an enabler of the clean energy transition, bridging the gap between millions of new energy assets at the grid edge and the century-old infrastructure at the core of our power systems. The competitive and innovative activity in the DERMS market today reflects the urgency and promise of that mission.

Sources & References

1. Fortune Business Insights – “*Distributed Energy Resource Management System Market, 2025-2032*” (Report Overview) fortunebusinessinsights.com fortunebusinessinsights.com
2. Ernst & Young (EY) – “*How will the evolution of technology transform the future of energy? – Benchmarking DERMS implementation among global utilities*” (2025 EY utility DERMS study) ey.com ey.com
3. Guidehouse Insights – “*Guidehouse Insights Leaderboard: DERMS Providers*” (2024 vendor assessment and market trends) a.storyblok.com a.storyblok.com
4. Schneider Electric (Press Release) – “*Open Platforming, AI and Strategic Collaboration Cement Schneider Electric’s Leadership in Grids of the Future*” (Feb 27, 2024, Schneider recognized as Grid and Edge DERMS leader) prnewswire.com
5. GE Vernova (Blog) – “*GE Vernova Ranked #1 in 2024 Guidehouse Insights Leaderboard for Grid DERMS*” (Jan 22, 2025, includes Energy Queensland dynamic connections case) gevernova.com
6. Generac Grid Services (Press Release) – “*Generac Grid Services Chosen to Deliver Comprehensive DERMS to Dominion Energy Virginia*” (Aug 30, 2022, Dominion selects Enbala Concerto DERMS) prnewswire.com prnewswire.com
7. EnergyHub (Blog) – “*Growing to 50 utility DERMS deployments and beyond*” (2021, statistics on EnergyHub client deployments and flexible load) energyhub.com
8. Smarter Grid Solutions – “*UK Power Networks – Flexible Plug and Play*” (Case Study, UKPN Active Network Management results) smartergridsolutions.com